

H₂ sensor based on Metal Oxide Semiconductor (MOS)

Naguy MOUSSA – PhD Student (<u>naguy.moussa@ge.com</u>) – General Electric - Université de Technologies de Belfort-Montbéliard - ICB-LERMPS

Study context

Hydrogen is seen as part of the decarbonized future since it can be produced e.g., by electrolysis powered by renewable energy during off-peak power demand. Once produced, it is aimed to be transported via several ways, among which, a dedicated H₂ pipeline (European Hydrogen Backbone) or blended into natural gas (NG) pipelines up to approximately 20% by volume.

Objective

Ensure safe operation of the entire H2 value chain infrastructure (electrolyzer, transport, gas turbine) \rightarrow real-time monitoring of H₂ concentration in NG and in air.

Challenge

Develop H₂ sensors that will work in presence of NG or air (leak detection) with the best possible performance.

Purpose & method

Why MOS sensor?

Comparative study of different detection technologies such as: acoustic, optical, electrochemical, catharometric, work function, catalytic and **resistive (MOS sensor) [1-4]**

- Advantages: H₂ sensitivity and stability in oxidant environment (air), inexpensive technology, easy to produce.
- Disadvantages: tradeoff needed in reductor environment (e.g. diluted in natural gas) among H₂ sensitivity AND selectivity AND response/recovery time parameters.

What performance is needed?

Response and recovery time ~1sec, limit of detection ~200ppm, selectivity.

How?

Sensor performance depends on material properties [4-7] ...

- Physico-chemical properties: electronic, molecular affinity, electrochemical, etc.
- Microstructure: morphology, thickness, porosity, etc.
- ... which depend on manufacturing process

Iterative approach

Sensor performance charaterization

Development and design of a new tailor-made test bench

The aim is to characterize sensor performances in different environments (gas, temperature, pressure, humidity)

- Design of a specific test bench allowing to:
 - Perform measurements at different gas concentrations in order to evaluate
 - Sensitivity
 - Selectivity
 - Detection limits
 - Determine the optimum and minimum operating temperatures
 - Evaluate the impact of pressure on the measurement
 - Evaluate the impact of humidity on the measurement
 - Evaluate measurement stability, repeatability, response and recovery times
- Develop a multi-parameter control interface.

Materials deep dive

References

- [1] P. Menini, Du Capteur de Gaz à Oxydes Métalliques vers les Nez Electroniques sans Fil, HDR, 2011
- [2] T. Hübert et al. / Sensors and Actuators B 157 (2011) 329–352. DOI: 10.1016/j.snb.2011.04.070
- [3] K. Chen et al., Optics and Laser Technology 137 (2021) 106808. DOI:10.1016/j.optlastec.2020.106808
- [4] T. Sahoo, P. Kale, Adv. Mater. Interfaces 2021, 8, 2100649. DOI: 10.1002/admi.202100649
- [5] A. Dey, Materials Science & Engineering B 229 (2018) 206–217. DOI: 10.1016/j.mseb.2017.12.036
- [6] Debliquy, Tech. Ing. 2006, R2385 V1
- [7] C. Chevalier Cesar, Élaboration et caractérisation de capteurs de gaz à base de nanofils de ZnO. Thèse de doctorat, 2014
- doctorat, 2014
- [8] E. H. Jordan, C. Jiang, *Journ. of Thermal Spray Tech*.2015, 24, 1153-1165. DOI:10.1007/s11666-015-0272-9
- [9] J. Hu, T. Zhang et al., *Nanomaterials* 2022, 12, 1001. DOI: 10.3390/nano12061001
- [10] https://www.winsen-sensor.com/sensors/mems-gas-sensor/gm702b.html
- [11] S. Agarwal et al., Sensors and Actuators: B. Chemical 346 (2021) 130510. DOI: 10.1016/j.snb.2021.130510
- [12] P. Yang, X. Li et al., *Int. J. Hydrogen Energ.* 45, 23841 (2020). DOI: 10.1016/j.ijhydene.2020.06.074
- [13] Z. Yu, Developments and characterizations of metal oxide semiconductor films deposited by solution precursor thermal spray for environmental and energy applications, Thèse de doctorat 2018
- precursor thermal spray for environmental and energy applications, These de doctorat 2018 [14] A. Pousse, J. Clayden, N. Greeves, S. Warren, Organic Chemistry, De Boeck edition, 2013
- [15] C. E. Housecroft, A. G. Sharp, Inorganic Chemistry, De Boeck edition, 2010

